NFBD1/MDC1 regulates Cav1 and Cav2 independently of DNA damage and p53.

نویسندگان

  • Kathleen A Wilson
  • Sierra A Colavito
  • Vincent Schulz
  • Patricia Heffernan Wakefield
  • William Sessa
  • David Tuck
  • David F Stern
چکیده

NFBD1/MDC1 is involved in DNA damage checkpoint signaling and DNA repair. NFBD1 binds to the chromatin component γH2AX at sites of DNA damage, causing amplification of ataxia telangiectasia-mutated gene (ATM) pathway signaling and recruitment of DNA repair factors. Residues 508-995 of NFBD1 possess transactivation activity, suggesting a possible role of NFBD1 in transcription. Furthermore, NFBD1 influences p53-mediated transcription in response to adriamycin. We sought to determine the role of NFBD1 in ionizing radiation (IR)-responsive transcription and if NFBD1 influences transcription independently of p53. Using microarray analysis, we identified genes altered upon NFBD1 knockdown. Surprisingly, most NFBD1 regulated genes are regulated in both the absence and presence of IR, thus pointing toward a novel function for NFBD1 outside of the DNA damage response. Furthermore, NFBD1 knockdown regulated genes mostly independent of p53 knockdown. These genes are involved in pathways including focal adhesion signaling, carbohydrate metabolism, and insulin signaling. We found that CAV1 and CAV2 mRNA and protein levels are reduced by both NFBD1 knockdown and knockout independently of IR and p53. NFBD1-depleted cells exhibit some similar phenotypes to Cav1-depleted cells. Furthermore, like Cav1-depletion, NFBD1 shRNA increases Erk phosphorylation. Thus, Cav1 could act as a mediator of the DNA-damage independent effects of NFBD1 in mitogenic signaling.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

DNA Damage and Cellular Stress Responses NFBD1/MDC1 Regulates Cav1 and Cav2 Independently of DNA Damage and p53

NFBD1/MDC1 is involved in DNA damage checkpoint signaling and DNA repair. NFBD1 binds to the chromatin component gH2AX at sites of DNA damage, causing amplification of ataxia telangiectasia-mutated gene (ATM) pathway signaling and recruitment of DNA repair factors. Residues 508–995 of NFBD1 possess transactivation activity, suggesting a possible role of NFBD1 in transcription. Furthermore, NFBD...

متن کامل

MDC1 Directly Binds Phosphorylated Histone H2AX to Regulate Cellular Responses to DNA Double-Strand Breaks

Histone variant H2AX phosphorylation in response to DNA damage is the major signal for recruitment of DNA-damage-response proteins to regions of damaged chromatin. Loss of H2AX causes radiosensitivity, genome instability, and DNA double-strand-break repair defects, yet the mechanisms underlying these phenotypes remain obscure. Here, we demonstrate that mammalian MDC1/NFBD1 directly binds to pho...

متن کامل

53BP1 and NFBD1/MDC1-Nbs1 function in parallel interacting pathways activating ataxia-telangiectasia mutated (ATM) in response to DNA damage.

53BP1 and NFBD1/MDC1 are recruited rapidly to sites of DNA double-strand breaks (DSBs), where they are hypothesized to function downstream of the ataxia-telangiectasia mutated (ATM) checkpoint kinase as "mediators" of DNA DSB signaling. To test this hypothesis, we suppressed 53BP1 and NFBD1/MDC1 expression by small interference RNA and monitored ATM autophosphorylation at Ser(1981) as a marker ...

متن کامل

NFBD1/Mdc1 mediates ATR-dependent DNA damage response.

Budding yeast Rad9 (scRad9) plays a central role in mediating Mec1-dependent phosphorylation by recruiting its downstream substrates. The human scRad9 orthologues 53BP1 and NFBD1 associate with ionizing radiation-induced foci (IRIF) at sites of DNA repair. RNAi-based gene silencing of 53BP1 or NFBD1 has shown impaired phosphorylation of SQ/TQ [ataxia-telangiectasia mutated/ATM and Rad3-related ...

متن کامل

Dynamic assembly and sustained retention of 53BP1 at the sites of DNA damage are controlled by Mdc1/NFBD1

53BP1 is a key component of the genome surveillance network activated by DNA double strand breaks (DSBs). Despite its known accumulation at the DSB sites, the spatiotemporal aspects of 53BP1 interaction with DSBs and the role of other DSB regulators in this process remain unclear. Here, we used real-time microscopy to study the DSB-induced redistribution of 53BP1 in living cells. We show that w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular cancer research : MCR

دوره 9 6  شماره 

صفحات  -

تاریخ انتشار 2011